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A foundation model for the Earth system

Cristian Bodnar1,2,11, Wessel P. Bruinsma1,11, Ana Lucic1,3,11, Megan Stanley1,11, Anna Allen4,11, 
Johannes Brandstetter1,5, Patrick Garvan1, Maik Riechert1, Jonathan A. Weyn6, Haiyu Dong6, 
Jayesh K. Gupta2,7, Kit Thambiratnam6, Alexander T. Archibald4, Chun-Chieh Wu8, 
Elizabeth Heider1, Max Welling1,3, Richard E. Turner1,4,9 & Paris Perdikaris1,10 ✉

Reliable forecasting of the Earth system is essential for mitigating natural disasters 
and supporting human progress. Traditional numerical models, although powerful, 
are extremely computationally expensive1. Recent advances in artificial intelligence 
(AI) have shown promise in improving both predictive performance and efficiency2,3, 
yet their potential remains underexplored in many Earth system domains. Here we 
introduce Aurora, a large-scale foundation model trained on more than one million 
hours of diverse geophysical data. Aurora outperforms operational forecasts in 
predicting air quality, ocean waves, tropical cyclone tracks and high-resolution 
weather, all at orders of magnitude lower computational cost. With the ability to be 
fine-tuned for diverse applications at modest expense, Aurora represents a notable 
step towards democratizing accurate and efficient Earth system predictions. These 
results highlight the transformative potential of AI in environmental forecasting  
and pave the way for broader accessibility to high-quality climate and weather 
information.

Earth system forecasts are indispensable tools for human societies, 
as evidenced by recent natural events such as the floods in Valencia, 
the air quality crisis in New Delhi and hurricanes Helene and Milton in 
the eastern United States. Such systems not only provide crucial early 
warnings for extreme events but are also important for diverse appli-
cations ranging from agriculture to healthcare to global commerce. 
Modern Earth system predictions rely on complex models developed 
using centuries of accumulated physical knowledge, providing global 
forecasts of diverse variables for weather, air quality, ocean currents, 
sea ice and hurricanes.

Despite their vital role, Earth system forecasting models face several 
limitations. They are computationally demanding, often requiring 
purpose-built supercomputers and dedicated engineering teams for 
maintenance. Their complexity, built up over years of development 
by large teams, complicates rapid improvements and necessitates 
substantial time and expertise for effective management. Finally, fore-
casting models incorporate various approximations, such as those for 
sub-grid-scale processes, limiting accuracy. These challenges open the 
door for alternative approaches that may offer enhanced performance.

Machine learning provides an attractive toolbox for addressing these 
issues. Breakthroughs in numerous fields have shown that complex 
prediction systems can be streamlined with machine learning models 
that deliver superior outcomes4,5. This concept was introduced to the 
Earth sciences as early as the 1990s, with pioneering work on neural 
networks6 applied to various Earth forecasting problems7–15. However, 
these early models could not scale to replace full dynamical systems. 
In 2023, a breakthrough came with Pangu-Weather2, in which a neural 
network replaced a numerical solver, outperforming state-of-the-art 
forecasting systems and sparking a wave of weather prediction models 
based on AI3,16–18. These advancements have mostly centred on global 

medium-range weather forecasting at 0.25° resolution, leaving sub-
stantial gaps in other essential areas, including ocean dynamics, wave 
modelling and atmospheric chemistry. Furthermore, the potential for 
machine learning to outperform complex extreme weather prediction 
systems, which at present rely on human analysis of a wide range of 
models, remains underexplored.

In this paper, we introduce Aurora, a foundation model for the Earth 
system, capable of tackling a variety of forecasting tasks. Taking inspira-
tion from recent successes of foundation models in other fields4,5, we 
first pretrain Aurora on more than one million hours of diverse Earth 
system data. We then fine-tune the model on a range of downstream 
tasks, demonstrating for the first time that an AI model can outperform 
several existing operational systems while also being orders of magni-
tude faster. Specifically, Aurora achieves state-of-the-art performance 
in the following critical forecasting domains:
• 5-day global air pollution forecasts at 0.4° resolution, outperforming 

resource-intensive numerical atmospheric chemistry simulations 
on 74% of targets;

• 10-day global ocean wave forecasts at 0.25° resolution, exceeding 
costly numerical models on 86% of targets;

• 5-day tropical cyclone track forecasts, outperforming seven opera-
tional forecasting centres on 100% of targets;

• 10-day global weather forecasts at 0.1° resolution, surpassing 
state-of-the-art numerical models on 92% of targets while also improv-
ing performance on extreme events.

Aurora: an Earth system foundation model
Aurora is a machine learning model that produces forecasts for any col-
lection of Earth system variables at any desired resolution. The model 
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consists of three parts: (1) an encoder that converts heterogeneous 
inputs into a universal latent three-dimensional (3D) representation; 
(2) a processor that evolves the representation forward in time; and 
(3) a decoder that translates the standard 3D representation back into 
physical predictions. The processor is implemented as a 3D Swin Trans-
former19,20 and both the encoder and the decoder as Perceiver-based 
modules21,22 (Fig. 1). Forecasts for different lead times are generated 
by recursively feeding predictions back into the model as inputs. For 
a detailed discussion of the model, see Supplementary Information 
Section B.

We train Aurora on a large body of Earth system data to learn a general- 
purpose representation of the dynamics that govern atmospheric and 
oceanic flow and associated second-order processes. This first training 
phase is called pretraining and includes a mixture of forecasts, analy-
sis data, reanalysis data and climate simulations (see Supplementary 
Information Section C.2). After the model has been pretrained, a second 
training phase can make use of the learned general-purpose representa-
tions to efficiently adapt to new tasks, new datasets and new variables. 
This second training phase is called fine-tuning. Whereas pretraining 
is expensive and requires large amounts of data, fine-tuning is much 
cheaper and can typically be performed with little data. We primarily 
pretrain on atmospheric data, because this is one of the largest sources 
of information about the dynamical processes underlying the Earth sys-
tem. Concretely, the pretraining objective is to minimize the next time 
step (6-h lead time) mean absolute error (MAE) for 150,000 steps on 
32 A100 graphics processing units (GPUs), corresponding to approxi-
mately 2.5  weeks of training.

Aurora is able to achieve unprecedented performance in fine-tuning 
tasks by simultaneously scaling the volume of data used during pre-
training along with its model size. To evidence this scaling, we demon-
strate that pretraining on more diverse data systematically improves 
validation performance as more datasets are added, especially for 
extreme values (see Supplementary Information Section  G  and 
Extended Data Figs. 1 and 2). Moreover, we demonstrate that vali-
dation performance improves by approximately 6% for every ten 
times increase in model size (see Supplementary Information Sec-
tion G and Extended Data Figs. 1 and 2). Finally, to measure the benefits 
of data and model scaling against existing numerical and AI models, 
we fine-tune Aurora for medium-range weather forecasting at 0.25° 
resolution, a common task for state-of-the-art AI weather models. 
Aurora outperforms both the Integrated Forecasting System (IFS) of 

the European Centre for Medium-Range Weather Forecasts (ECMWF)1, 
the state-of-the-art numerical weather prediction system and Graph-
Cast3 on more than 91% of all targets (see Supplementary Information  
Section H).

Atmospheric chemistry and air pollution
Air quality, a crucial factor in human health, is determined by atmos-
pheric concentrations of specific gases and aerosols23. Accurately pre-
dicting global atmospheric composition can help mitigate the impact 
of air pollution events. However, forecasting atmospheric composition 
is much more complex and computationally costly than weather fore-
casting. It involves modelling complex chemical reactions through hun-
dreds of stiff equations and accounting for anthropogenic emissions 
that drive heterogeneous pollution levels globally24. The Copernicus 
Atmosphere Monitoring Service (CAMS) takes this approach and pro-
duces global atmospheric composition forecasts and analysis products 
at 0.4° resolution and reanalysis products at 0.75° resolution25. To do 
this, CAMS extends the IFS with further modules for aerosols, reactive 
gases and greenhouse gases, which increases computational costs by 
approximately a factor of ten. So far, no AI method has attempted to 
produce operational predictions for global atmospheric composition 
at this scale.

Fine-tuning AI models on CAMS analysis data is extremely chal-
lenging for several reasons. First, the CAMS system is relatively new 
and frequently updated, so training data are limited and change in 
distribution. Second, air pollution concentrations are highly hetero-
geneous, sparse and have large dynamic ranges (see ‘Discussion’). 
Finally, pollution is driven by complex anthropogenic factors. These 
sources underwent complex changes during the global response to the  
COVID-19 pandemic, further complicating the available training data.

Six air pollutants are the main drivers of poor air quality23,26: carbon 
monoxide (CO), nitrogen oxide (NO), nitrogen dioxide (NO2), sulfur 
dioxide (SO2), ozone (O3) and particulate matter at 1 μm (PM1), 2.5 μm 
(PM2.5) and 10 μm (PM10). Air quality warnings are usually based on 
threshold values for PM2.5 and PM10. Aurora models the five chemical 
species (CO, NO, NO2, SO2 and O3) across atmospheric levels and as 
total column (TC) values as well as the particulate matter variables, 
with CAMS analysis taken to be ground truth. We fine-tune Aurora on 
CAMS analysis data from October 2017 to May 2022 and test on CAMS 
analysis data from May 2022 to November 2022 (see Supplementary 
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Fig. 1 | Aurora is a 1.3-billion-parameter foundation model for the Earth 
system. Icons are for illustrative purposes only. a, Aurora is pretrained  
on several heterogeneous datasets with different resolutions, variables  
and pressure levels. The model is then fine-tuned for several operational 
forecasting scenarios at different resolutions: atmospheric chemistry and air 

quality at 0.4°, wave modelling at 0.25°, hurricane tracking at 0.25° and  
weather forecasting at 0.1°. b, Aurora is a flexible 3D Swin Transformer19 with  
3D Perceiver-based21 atmospheric encoders and decoders. The model is able  
to ingest inputs with different spatial resolutions, numbers of pressure levels 
and variables.
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Information Section C.4). As the CAMS analysis dataset is very limited 
in temporal extent, we also incorporate CAMS reanalysis data EAC4 
(ref. 27) from January 2003 to December 2021 in the fine-tuning pro-
cess. We note that CAMS reanalysis data are considered to be lower 
quality because it uses a lower resolution and a much older version 
of the underlying model (see Supplementary Information Section C).

Aurora is competitive with CAMS (within 20% root mean square error 
(RMSE)) on 95% of all targets and matches or outperforms CAMS on 
74% of all targets (Fig. 2a). At the 3-day mark, Aurora is competitive with 
CAMS (within 20% RMSE) on all variables and matches or outperforms 
CAMS on 89% of all variables (Fig. 2b). CAMS outperforms Aurora on 
ozone in the very upper atmosphere and the 12-h prediction of all 
species in the lower part of the atmosphere. Aurora generates these 
predictions in approximately 0.6 s per hour lead time on a single A100 
GPU. This yields roughly a 100,000 times speed-up over CAMS (see 
Section 2.1.5 in ref. 28 for the cost of the IFS), representing an important 
advancement in the field of atmospheric composition forecasting. 
Fine-tuning the pretrained model produces large gains over training 
a model from scratch, giving improvements for all targets with an 
average magnitude of 54% (see Fig. I24 in Supplementary Informa-
tion Section I.1).

We conduct a case study evaluating the predictions of Aurora for PM10 
on 13 June 2022, when Iraq was hit by a particularly severe sandstorm 

(see Fig. I21 in Supplementary Information Section I.1), one of a series 
that led to more than 5,000 hospitalizations in the Middle East29. 
Sandstorms involve complex interactions between particulate matter 
variables and atmospheric dynamics. Nevertheless, Aurora accurately 
predicts the sandstorm a day in advance with similar accuracy to CAMS, 
at a fraction of the computational cost. This case study shows that a 
foundation model approach for predicting air pollution can generalize 
to extreme events involving complex interactions between atmospheric 
dynamics and pollutants.

Ocean wave dynamics
Accurate ocean wave forecasts are critical for shipping, coastal 
defences, aquaculture, off-shore energy generation and disaster 
preparedness. The IFS High RESolution WAve Model (HRES-WAM) 
system30 produces state-of-the-art wave forecasts up to 10 days  
lead time. IFS HRES-WAM extends the IFS by adding a coupled ocean 
wave module. No AI model has yet attempted to produce operational 
predictions for global wave forecasts at this scale.

Fine-tuning Aurora on the ECMWF’s HRES-WAM analysis dataset 
is challenging. Ocean wave variables include information about the 
direction, time periods and spectral properties of waves, all of which 
are complex to model. Wave components can also be absent, meaning 

A
ur

or
a

1 September 2022 12 UTC 2 September 2022 00 UTC

C
A

M
S

 fo
re

ca
st

s
C

A
M

S
 a

na
ly

si
s

0 2 4 6 8 10

TC NO2 (mg m−2)

1 2 3 4 5

50
100
150
200
250
300
400
500
600
700
850
925

1,000

P
re

ss
ur

e 
(h

P
a)

CO

1 2 3 4 5

NO

1 2 3 4 5

NO2

1 2 3 4 5

SO2

1 2 3 4 5

O3

–40% –20% 0% +20% +40%

RMSE relative to CAMS

1 2 3 4 5

TC CO

1 2 3 4 5

TC NO

1 2 3 4 5

TC NO2

1 2 3 4 5

TC SO2

1 2 3 4 5

TC O3

1 2 3 4 5

PM1

1 2 3 4 5

PM2.5

1 2 3 4 5

PM10

Lead time (days)

S
O

2 
15

0 
hP

a

S
O

2 
25

0 
hP

a

S
O

2 
20

0 
hP

a
N

O
2 

50
0 

hP
a

N
O

2 
40

0 
hP

a

N
O

 5
00

 h
P

a
N

O
 6

00
 h

P
a

N
O

 4
00

 h
P

a

N
O

2 
30

0 
hP

a
N

O
 3

00
 h

P
a

S
O

2 
10

0 
hP

a
N

O
2 

60
0 

hP
a

N
O

2 
25

0 
hP

a
C

O
 5

0 
hP

a
N

O
 1

50
 h

P
a

N
O

 2
50

 h
P

a
S

O
2 

30
0 

hP
a

TC
 N

O
C

O
 6

00
 h

P
a

 O
3 

60
0 

hP
a

 O
3 

70
0 

hP
a

 O
3 

50
0 

hP
a

C
O

 7
00

 h
P

a
TC

 N
O

2

N
O

2 
10

0 
hP

a
O

3 
40

0 
hP

a
N

O
 1

00
 h

P
a

C
O

 1
50

 h
P

a
N

O
2 

15
0 

hP
a

S
O

2 
40

0 
hP

a
N

O
2 

70
0 

hP
a

N
O

2 
92

5 
hP

a

O
3 

30
0 

hP
a

O
3 

85
0 

hP
a

N
O

 7
00

 h
P

a
C

O
 2

00
 h

P
a

N
O

 2
00

 h
P

a
O

3 
25

0 
hP

a

O
3 

92
5 

hP
a

C
O

 1
00

 h
P

a
TC

 S
O

2
S

O
2 

50
 h

P
a

P
M

1
C

O
 2

50
 h

P
a

S
O

2 
60

0 
hP

a

S
O

2 
70

0 
hP

a

C
O

 5
00

 h
P

a

C
O

 4
00

 h
P

a
C

O
 3

00
 h

P
a

S
O

2 
50

0 
hP

a

S
O

2 
92

5 
hP

a

N
O

2 
20

0 
hP

a
N

O
2 

85
0 

hP
a

C
O

 9
25

 h
P

a
C

O
 1

,0
00

 h
P

a
C

O
 8

50
 h

P
a

O
3 

1,
00

0 
hP

a
O

3 
20

0 
hP

a

N
O

2 
1,

00
0 

hP
a

N
O

 1
,0

00
 h

P
a

TC
 C

O
S

O
2 

85
0 

hP
a

P
M

2.
5

N
O

 8
50

 h
P

a
N

O
 5

0 
hP

a
 N

O
2 

50
 h

P
a

N
O

 9
25

 h
P

a
P

M
10

S
O

2 
1,

00
0 

hP
a

O
3 

15
0 

hP
a

O
3 

50
 h

P
a

TC
 O

3
O

3 
10

0 
hP

a

–30%
–20%
–10%

0%
+10%
+20%

R
M

S
E

 r
el

at
iv

e
to

 C
A

M
S

Aurora versus CAMS at 3 days lead time

CAMS

Aurora

a b

c

Fig. 2 | In an operational setting, Aurora matches or outperforms CAMS  
in most comparisons, at orders of magnitude smaller computational 
expense. a, Predictions for TC NO2 by Aurora accurately predict CAMS 
analysis. Predicting atmospheric gases correctly is extremely challenging 
owing to their spatially heterogeneous nature. In particular, NO2, like most  
air pollution variables, is skewed towards high values in areas with large 
anthropogenic emissions, such as densely populated regions of East Asia. 
Also, NO2 exhibits a strong diurnal cycle; for example, sunlight reduces 

background levels of NO2 through a process called photolysis. Aurora 
accurately captures both the extremes and background levels. Aurora and 
CAMS25 forecasts are initialized with CAMS analysis on 1 September 2022 at 
00 UTC. b, Across all lead times, Aurora matches or outperforms CAMS on 
74% of all targets. c, At a lead time of 3 days, Aurora matches or outperforms 
CAMS on 89% of all variables. See Supplementary Information Section I.1 for 
the full results.
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that the new variables can be undefined at arbitrary and variable spa-
tial locations. Moreover, data for the variables that we consider in this 
experiment are only available back to 2016, a short record for such a 
complex task.

The key variables in ocean wave modelling are significant wave 
height (SWH), mean wave period (MWP) and mean wave direction 
(MWD). Each of these is predicted for wind waves (WW), total swell 
(TS), primary swell (1) and secondary swell (2). We also include peak 
wave period (PP1D) and the components of neutral wind31 at 10 m, 
10UN and 10VN (see Supplementary Information Section C.5). For the 
full set of variables, see Table C2 in Supplementary Information sec-
tion C.2. We simultaneously fine-tune Aurora on both wave and mete-
orological variables by aligning HRES-WAM analysis and HRES T0 in 
time. HRES T0 refers to the zero-hour forecasts of the high-resolution 
configuration of the IFS32, which provides an accurate ground truth 
for a wide range of meteorological variables. Both HRES-WAM analysis 

and HRES T0 are regridded to 0.25° spatial resolution. Because the 
HRES-WAM variables are undefined over land and over oceans when-
ever sea ice is present, we extend Aurora to support missing data33 (see 
‘Discussion’). We use the years 2016–2021 inclusive for fine-tuning 
and evaluate on 2022 (see Supplementary Information Section C.4).

Aurora is competitive with HRES-WAM (within 20% RMSE) on 96% 
of all targets and matches or outperforms HRES-WAM on 86% of all 
wave variables (Fig. 3b). At the 3-day mark, Aurora is competitive 
with HRES-WAM (within 20% RMSE) on all but one variable, PP1D, 
and matches or outperforms IFS HRES-WAM on 91% of all variables 
(Fig. 3c). In particular, Aurora accurately predicts neutral wind speeds, 
a critical variable for the coupling of atmospheric and wave models31. 
Fine-tuning the pretrained model produces large gains over training a 
model from scratch, giving improvements for all targets with an aver-
age magnitude of 22% (see Fig. I28 in Supplementary Information  
Section I.2).
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height and mean wave direction for Typhoon Nanmadol, the most intense 
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and the number is the peak significant wave height. Aurora’s prediction and 
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Nanmadol reached peak intensity. Aurora was initialized on 16 September 2022 
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on 86% of all wave variables. c, At a lead time of 3 days, Aurora matches or 
outperforms HRES-WAM on 91% of all surface-level variables. See Supplementary 
Information Section I.2 for the full results.
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We conduct a case study of Aurora’s prediction of the significant 
wave height and mean wave direction during Typhoon Nanmadol, 
which struck the southern coast of Japan on 19 September 2022 
(Fig. 3a). Aurora generally produces strong global predictions for 
significant wave height and mean wave direction that follow the pre-
vailing global wind patterns, with large waves in the typhoon accurately  
captured.

Tropical cyclone tracking
Tropical cyclones have caused more than US$1.4 trillion in dam-
age since 1950 and pose substantial threats to lives and property34.  
Official forecasts of tropical cyclone tracks are vital for emergency 
services and the general public. These forecasts are produced by run-
ning various dynamical and statistical models, ranging from global 
ensembles such as the IFS to purpose-built tropical cyclone forecast-
ing systems such as the Hurricane Weather Research and Forecast-
ing model35. The output from these systems, together with several 
consensus products, is analysed by a team of human forecasters who 
create the final operational product. Here we demonstrate that a sin-
gle, deterministic run of Aurora fine-tuned to HRES T0 at 0.25° (see 
Supplementary Information Section H) outperforms the track fore-
casts from these complex systems for several agencies on a dataset 
of all tropical cyclones globally in 2022–2023. Aurora fine-tuned to 
HRES T0 is not specifically fine-tuned for tropical cyclone tracking 
and therefore illustrates the performance of the model on an unseen  
downstream task.

Previous comparisons of AI-based tropical cyclone forecasts with 
official operational forecasts have focused on forecasting track and 
intensity at short lead times of up to 24 h (refs. 36,37) and showed only 
marginal improvements at best. The analysis of other large-scale global 

machine learning models2,3,38 has been limited to comparisons of tracks, 
with recent comparisons indicating that performance lags behind that 
of the official operational forecasts39.

To generate the track forecasts with Aurora, we run a simple heuris-
tic tracker labelling the centre fix of the vortex as the minimum mean 
sea-level pressure in consecutive predictions (see Supplementary 
Information Section I.3.3). We compare the Aurora track predictions 
with the official forecasts for four basins worldwide, issued by the 
National Hurricane Center (North Atlantic and East Pacific), China 
Meteorological Administration, Central Weather Administration 
Taiwan, Joint Typhoon Warning Centre and Japan Meteorological 
Agency (Northwest Pacific) and Australian Bureau of Meteorology 
(Australian region). For all agencies and lead times, Aurora outper-
forms the official track forecast (Fig. 4a) when compared with the 
ground-truth paths from the International Best Track Archive for 
Climate Stewardship (IBTrACS) dataset40,41. For example, in the North 
Atlantic and East Pacific, we observe improvements of 6% at lead time 
1 day and 20–25% at lead times 2–5 days. This is the first time that 
a machine learning model has surpassed full operational tropical 
cyclone forecasts up to 5 days.

Aurora is able to produce accurate forecasts for several high-impact 
events. For example, in the case of Typhoon Doksuri in 2023, Aurora 
accurately predicts landfall in the Philippines at 4 days lead time, in 
contrast to the official predictions centring the vortex off the coast 
of Northern Taiwan (Fig. 4b). It is also important to consider the per-
formance of Aurora relative to the wider set of models available to the 
human forecasters to create the official forecast, as certain models 
outperform the official prediction at various lead times42,43. We there-
fore compare Aurora with the headline models in the track verification 
report42 of the National Hurricane Center (NHC) for the North Atlantic 
and East Pacific. Aurora outperforms all headline models (Fig. 4a), 
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Fig. 4 | In an operational setting, Aurora outperforms state-of-the-art 
tropical cyclone prediction systems for several agencies and regions 
worldwide. a, Aurora attains better track prediction MAE than several 
agencies in various regions. Official forecasts are given by OFCL, PGTW, 
CWA, BABJ, RJTD, RKSL and BoM (in bold). For the North Atlantic and East 
Pacific, we also compare with various models used in creating OFCL (not 
bold). A model does not always make forecasts, which means that different 
columns are computed over different data. Columns are therefore not 
indicative of model performance and only indicate the performance compared 
with Aurora. Here ‘≈’ indicates that the 95% confidence interval for the cell 

contains zero (see Supplementary Information Section I.3.4 for details). On 
average, Aurora is 20% better than other agencies in the North Atlantic and 
East Pacific, 18% in the Northwest Pacific and 24% in the Australian region 
(Aus.). b, On 21 July, a tropical depression intensified into a tropical storm and 
was named Typhoon Doksuri. Typhoon Doksuri would become the costliest 
Pacific typhoon so far, inflicting more than US$28 billion in damage. The 
black lines show its ground-truth paths extracted from IBTrACS40,41. Aurora 
correctly predicts that Typhoon Doksuri will make landfall in the Northern 
Philippines, whereas PGTW predicts that it will pass over Taiwan.
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giving confidence that this is indeed a notable step forward in tropical 
cyclone track forecast skill.

High-resolution weather forecasting
To accurately resolve high-impact weather events such as severe storms, 
it is essential that weather prediction systems operate at a high spatial 
resolution to resolve processes occurring at smaller scales, such as 
convective and boundary layer effects. HRES32, the high-resolution 
configuration of the IFS, operates on a Gaussian grid (TCo1279), which 
is approximately 0.1° in mid-latitudes. By contrast, current state-of-
the-art AI weather prediction models2,3,16,38,44 can only operate at 0.25° 
resolution. The reason why state-of-the-art AI approaches are focused 
on 0.25° is the wealth of high-quality data available at this resolution, 
whereas 0.1° data are only available from 2016 onwards. Here we demon-
strate that a pretraining–fine-tuning protocol can be used to efficiently 
adapt Aurora to 0.1° and surpass the forecasting skill of IFS HRES under 
operational evaluation protocols.

We fine-tune Aurora to 0.1° IFS HRES analysis data, which span 
2016–2022 (see ‘Discussion’ and Supplementary Information Sec-
tion B). For evaluation, we follow the operational protocol in ref. 45, 
initializing Aurora with IFS HRES analysis and evaluating forecasts 
against IFS HRES analysis. To ensure that we do not disadvantage 
IFS HRES, we follow ref. 3 and evaluate IFS HRES against its own 

so-called zero-hour forecast, referred to as HRES T0, instead of IFS HRES  
analysis.

Aurora achieves lower RMSE than IFS HRES on 92% of target vari-
ables, pressure levels and lead times (Fig. 5a). The performance gains 
are most pronounced at lead times of more than 12 h into the future, 
for which we observe a reduction in RMSE of up to 24%. At the shortest 
lead times, IFS HRES outperforms Aurora for many targets, as is the 
case for other AI models3. We also evaluate the forecasts of Aurora on 
in situ measurements of 10-m wind speed and 2-m temperature from the 
WeatherReal-ISD dataset46, which includes more than 13,000 weather 
observing stations globally. We find that Aurora outperforms IFS HRES 
for all lead times up to 10 days (see Fig. 5b and Supplementary Informa-
tion Section I.5). Owing to the limited availability of 0.1° data, we find 
that pretraining Aurora is essential in this application. On average, 
the pretrained model is better than training from scratch by 25% (see 
Supplementary Information Section I.4).

We conduct a case study of Storm Ciarán, a high-impact mid-latitude 
storm that took place across Northwest Europe in late 2023, resulting 
in the lowest recorded pressure in November in England47. Following 
ref. 48, we initialize a selection of AI models at 31 October 00 UTC and 
compare them with Aurora (see Fig. 5d). We observe that, among the AI 
models tested2,3,38, Aurora is the only one capable of accurately predict-
ing the abrupt increase in maximum 10-m wind speed, closely matching 
IFS analysis, which is taken to be the ground truth.
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Fig. 5 | In an operational setting, Aurora outperforms IFS HRES in most 
comparisons and is the only AI model to accurately estimate the maximum 
wind speeds in Storm Ciarán. a, Aurora outperforms IFS HRES at 0.1° on more 
than 92% of targets. The scorecard is limited to pressure levels lower in the 
atmosphere owing to restricted availability of test year data. b, Wind speed 
RMSE computed against measurements at weather stations. Aurora greatly 
outperforms IFS HRES. c, Operational predictions for Storm Ciarán compared 
with IFS HRES analysis at 0.1°. Black dots show the location of minimum MSL 

and therefore trace the path of the storm. The maximum 10-m wind speed of 
the storm is shown in the bottom-left corner of each prediction. To better 
facilitate the prediction of extreme events, Aurora was run without LoRA. See 
Supplementary Information Section I.7 for details. d, Operational predictions 
for maximum 10-m wind speed during Storm Ciarán by Aurora, FourCastNet, 
GraphCast and Pangu-Weather. Aurora is able to predict the sudden increase in 
10-m wind speed, unlike the other AI models. The numbers for all AI models 
except Aurora have been extracted from Fig. 3 in ref. 48.
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Discussion
We have introduced Aurora, a large-scale foundation model for the 
Earth system that outperforms several specialized operational predic-
tion systems at a fraction of the computational cost. We demonstrate 
state-of-the-art results for air quality, ocean waves, tropical cyclone 
tracks and high-resolution weather forecasting. From start to finish, 
each fine-tuning experiment took 4–8 weeks with a small team of engi-
neers, compared with a typical development period of several years for 
dynamical baseline models. However, it should be noted that such an 
accelerated timeline is only possible because of the wealth of data that 
is available as a result of decades of research into traditional numerical 
approaches.

Improvements are possible along several axes. First, Aurora can easily 
be extended to generate an ensemble of forecasts, which are crucial 
in situations in which predictions are uncertain, such as for forecasts 
at longer lead times or for localized phenomena. Moreover, our scaling 
results indicate that we have not yet hit a performance ceiling and that 
improved fine-tuning results can be obtained by scaling pretraining to 
more diverse data and scaling Aurora to even larger sizes. Although 
Aurora is fully operational in all experiments, the model does still rely 
on initial conditions from traditional data assimilation systems. Fol-
lowing recent advances in end-to-end weather forecasting49, Aurora 
could be extended to directly operate on observational data. We 
could also investigate the interpretability of Aurora, aiming to under-
stand whether specific patterns learned by the model can be linked to  
physical processes.

The potential implications of Aurora for the field of Earth system 
prediction are profound. Although in this paper we showcase the 
application of Aurora to four domains, it could be fine-tuned for any 
desired Earth system prediction task, potentially producing fore-
casts that outperform the current operational systems at a fraction 
of the cost. Some examples include predicting ocean circulation, 
local and regional weather, seasonal weather, vegetation growth and 
phenology, extreme weather modalities such as floods and wildfires, 
pollination patterns, agricultural productivity, renewable energy 
production and sea ice extent. With the ability to fine-tune Aurora 
to diverse application domains at only modest computational cost, 
Aurora represents notable progress in making actionable predictions 
accessible to anyone.
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Methods

Problem statement
We represent the observed state of the atmosphere and surface at a 
discrete time t as a multidimensional array RX ∈t V H W× × , in which V is 
the total number of variables and H and W are the number latitude and 
longitude coordinates, respectively. The state can be split into surface 
(St) and atmospheric (At) components: Xt = (St, At), in which S ∈t V H W× ×SR  
and RA ∈t V C H W× ×A  with VS the number of surface-level variables, VA the 
number of atmospheric variables and C the number of pressure levels. 
The goal is to predict a future state at time t′ > t. We learn a simulator 
Φ : ( ) →V H W V H W× × 2 × ×R R , ̂X X XΦ( , ) =t t t−1 +1, which maps the observed 
states at the previous time Xt−1 and current time Xt to a predicted state 
X

t +1̂  at the next time step. For predictions at later time steps, we repeat-
edly apply the simulator, producing an autoregressive roll-out:

( )

( )
( )

X X X

X X X

X X X

Φ , = ,

Φ , = ,

Φ , = .

t t t

t t t

t k t k t k

+1 +2

+1 +2 +3

+ −2 + −1 +
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For a detailed description of the notation and problem statement, 
including the specific multidimensional array dimensions and variable 
definitions, see Supplementary Information Section A.

The Aurora model
3D Perceiver encoder. To accommodate heterogeneous weather 
datasets with varying variables, pressure levels and resolutions, we 
design a flexible encoder that maps different datasets into a standard-
ized 3D representation for input into the model backbone (Extended 
Data Fig. 3a).

The encoder treats all variables as H × W images. We incorporate 
static variables (orography, land–sea mask and soil-type mask) by treat-
ing them as extra surface-level variables. The images are split into P × P 
patches and the patches are mapped to embedding vectors of dimension 
D using variable-specific linear transformations. For the surface and 
every pressure level, the embeddings of different variables are summed 
and tagged with an additive encoding of the pressure level or a learned 
vector for the surface. A Perceiver module21 then reduces variable num-
bers of physical pressure levels C to a fixed number L = 3 of latent pres-
sure levels. The result is a L× ×H

P
W
P  collection of embeddings. This 3D 

representation is tagged with additive encodings for the patch position, 
patch area and absolute time. These encodings use a Fourier expansion 
scheme with carefully chosen minimum and maximum wavelengths to 
capture relevant information at appropriate scales. The patch area 
encoding enables Aurora to operate at different resolutions.

For a detailed description of the encoder architecture, including 
specifics on input processing, pressure-level aggregation and further 
encodings, see Supplementary Information Sections B.1 and B.4.

Multiscale 3D Swin Transformer U-Net backbone. The backbone 
of Aurora is a 3D Swin Transformer U-Net19,50, which serves as a neural 
simulator (see Fig. B1 Supplementary Information Section B.1). This 
architecture allows for efficient simulation of underlying physics at 
several scales. This architecture falls under the general family of Vision 
Transformers. However, unlike classical Vision Transformers, here we 
use local self-attention operations within windows and a symmetric 
upsampling–downsampling structure.

The backbone is characterized by the following key features: a sym-
metric upsampling–downsampling structure with three stages each, 
enabling multiscale processing; 3D Swin Transformer layers perform-
ing local self-attention operations within windows, emulating local 
computations in numerical integration methods; window shifting 

every other layer to propagate information between neighbouring 
regions while accounting for Earth’s spherical topology; res-post-norm 
layer normalization50 for increased training stability; and a flexible 
design allowing operation at several resolutions without fixed posi-
tional biases.

Our backbone contains 48 layers across three stages, compared 
with the 16 layers and two stages used in ref. 2. This increased depth 
is made possible by our efficient encoding procedure, which uses a 
small number of latent levels. For detailed information on the back-
bone architecture, including window sizes, attention mechanisms and 
comparisons with previous work, see Supplementary Information 
Section B.2.

3D Perceiver decoder. The decoder reverses the operations of the 
encoder, converting the output of the backbone, again a 3D repre-
sentation, back to the normal latitude–longitude grid (see Fig. 6b). 
This involves disaggregating the latent atmospheric pressure levels 
using a Perceiver layer21 to any desired collection of pressure levels 
and dynamically decoding into patches by means of variable-specific 
linear layers. For a detailed description of the decoder architecture, 
see Supplementary Information Section B.3.

Training methods
The overall training procedure is composed of three stages: (1) pretrain-
ing; (2) short-lead-time fine-tuning; and (3) roll-out (long-lead-time) 
fine-tuning. We provide an overview for each of these stages in the 
following.

Training objective. Throughout pretraining and fine-tuning, we use 
the MAE as our training objective X X( , )

t tL ̂ . Decomposing the pre-
dicted state ̂X

t
 and ground-truth state Xt into surface-level variables 

and atmospheric variables, ̂ ̂ ̂X S A= ( , )
t t t

 and Xt = (St, At) (see Supplemen-
tary Information Section A), the loss can be written as
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in which wk
S is the weight associated with surface-level variable k, 

wk c,
A  is the weight associated with atmospheric variable k at pressure 

level c, α is a weight for the surface-level component of the loss, β is 
a weight for the atmospheric component of the loss and γ is a 
dataset-specific weight. See Supplementary Information Section D.1 
for more details.

Pretraining methods. All models are pretrained for 150,000 steps on 
32 A100 GPUs, with a batch size of one per GPU. We use a (half) cosine 
decay with a linear warm-up from zero for 1,000 steps. The base learning 
rate is 5 × 10−4, which the schedule reduces by a factor of ten at the end 
of training. The optimizer we use is AdamW51. We set the weight decay 
of AdamW to 5 × 10−6. The only other form of regularization we use is 
drop path (that is, stochastic depth)52, with the drop probability set to 
0.2. To make the model fit in memory, we use activation checkpointing 
for the backbone layers and we shard all of the model gradients across 
the GPUs. The model is trained using bf16 mixed precision. See Sup-
plementary Information Section D.2 for further details.

Short-lead-time fine-tuning. After pretraining Aurora, for each task 
that we wish to adapt Aurora to, we start by fine-tuning the entire archi-
tecture through one or two roll-out steps (depending on the task and 
its memory constraints). See Supplementary Information Section D.3 
for more details.



Roll-out fine-tuning. To train very large Aurora models on long-term 
dynamics efficiently, even at high resolutions, we develop a new roll-out 
fine-tuning approach. Our approach uses low-rank adaptation (LoRA)53 
to fine-tune all linear layers in the backbone’s self-attention opera-
tions, allowing adaptation of very large models in a data-efficient and 
parameter-efficient manner. To save memory, we use the ‘pushforward 
trick’54, which propagates gradients only through the last roll-out step. 
Finally, to enable training at very large numbers of roll-out steps without 
compromising memory or training speed, we use an in-memory replay 
buffer, inspired by deep reinforcement learning55,56 (see Fig. D2 in Sup-
plementary Information Section D.3). The replay buffer samples initial 
conditions, computes predictions for the next time step, adds predic-
tions back to the replay buffer and periodically refreshes the buffer with 
new initial conditions from the dataset. For detailed roll-out protocols 
for each fine-tuning task, see Supplementary Information Section D.4.

Datasets
Aurora was trained and evaluated using a diverse set of weather and cli-
mate datasets, encompassing five main categories: analysis, reanalysis, 
forecast, reforecast and climate simulation datasets. This variety of data 
sources exposes Aurora to different aspects of atmospheric dynamics, 
reflecting variability in initial conditions, model parametrizations 
and chaotic dynamics. Key datasets used in our experiments include 
ERA5 reanalysis, HRES operational forecasts, IFS ensemble forecasts, 
GFS operational forecasts, GEFS ensemble reforecasts, CMIP6 climate 
simulations, MERRA-2 atmospheric reanalysis, as well as CAMS fore-
casts, analysis and reanalysis data. For a detailed inventory of all data-
sets used, including specific pressure levels, resolutions and further 
context for each dataset, see Supplementary Information Section C. 
These datasets vary in resolution, variables included and temporal 
coverage, providing a comprehensive basis for training, fine-tuning 
and evaluating the performance of Aurora across different scenarios.

Task-specific adaptations
Ocean wave forecasting. In the IFS HRES-WAM analysis data, there is 
a spatially varying absence of data reflecting the distribution of sea ice 
among other effects. To account for this dynamic nature of the spatial 
distribution of defined variables, we give each variable an extra chan-
nel to represent the presence of a measurement, so we add an extra set 
of density variables33 (see Supplementary Information Section B.8).

Data infrastructure
Training Aurora presented substantial technical challenges owing to the 
large size of individual data points (nearly 2 GB for 0.1° data) and the 
need to handle heterogeneous datasets with varying resolutions, vari-
ables and pressure levels. Owing to the size of data points, training is typi-
cally bottlenecked by data loading and not by the model. This means that 
training smaller models is not always cheaper, because training costs 
will be dominated by data loading. We developed a sophisticated data 
storage and loading infrastructure to address these technical challenges.

Data storage and preprocessing. We use Azure Blob Storage with 
several optimizations to ensure efficient data access. These optimiza-
tions include colocating data and compute to minimize latency and 
costs, storing datasets in appropriate chunks to avoid unnecessary data 
download and to minimize the number of concurrent connections and 
compressing these chunks to reduce network bandwidth.

Data loading. We have developed an advanced multisource data load-
ing pipeline to efficiently handle heterogeneous data. We now outline 
the main design principles of our pipeline. Datasets are instantiated 
using YAML configuration files specifying loading parameters. Each 
dataset generates a stream of lightweight BatchGenerator objects. The 
scope of the BatchGenerator class is to abstract away the details and par-
ticularities of datasets by offering a common interface for generating 

data batches. The streams are combined, shuffled and sharded across 
GPUs. After sharding, finally the common interface of BatchGenerator 
is used to do the work needed to download and construct batches for 
training and inference.

This pipeline enables efficient training on several heterogeneous 
datasets by batching only samples from the same dataset together 
and automatically balances workloads across GPUs by using different 
batch sizes for different datasets. This design offers flexibility needed 
to experiment with the Aurora model architecture while efficiently 
handling the challenges of large-scale, heterogeneous weather data 
processing. For a detailed description of the data loading pipeline, 
including the BatchGenerator object structure and the unpacking 
process, see Supplementary Information Section E.

Verification metrics
We evaluate the performance of Aurora using two main metrics: the 
RMSE and the anomaly correlation coefficient. Both metrics incorpo-
rate latitude weighting to account for the non-uniform grid of the Earth. 
The RMSE measures the magnitude of errors between predictions and 
ground truth, whereas the anomaly correlation coefficient measures 
the correlation between the deviation of the prediction and ground 
truth from the daily climatology.

To assess performance on extreme weather events, we use a thres-
holded RMSE. The thresholded RMSE uses a threshold to determine 
which latitude–longitude grid points should be included in the calcu-
lation, allowing for evaluation of model performance across different 
intensity levels of weather phenomena. The thresholds are defined 
using the mean and standard deviation of the ERA5 reanalysis data over 
all training years computed separately for each latitude–longitude 
point. We vary these thresholds linearly for both positive and negative 
values to obtain RMSE curves for different intensity levels.

For a comprehensive explanation of the verification methods used 
in this work, including their mathematical formulation and interpreta-
tion, see Supplementary Information Section F. Taken together, the 
metrics used here provide a robust framework for evaluating the per-
formance of Aurora across various weather conditions, from typical 
to extreme events.

Further details
Further details are available in the Supplementary Information and 
rely on refs. 26,46,57–75.

Data availability
Most of the data used to train and evaluate Aurora can be obtained from 
publicly available sources. The ERA5 dataset can be obtained from the 
Climate Data Store (CDS) (https://cds.climate.copernicus.eu). The 
HRES Forecasts, HRES T0 and HRES-WAM data can be obtained from 
the Meteorological Archival and Retrieval System (MARS) (https://
confluence.ecmwf.int/display/WEBAPI/Access+MARS). The ECMWF 
IFS Ensemble data were obtained from the WeatherBench2 repository 
(https://weatherbench2.readthedocs.io/en/latest/data-guide.html). 
The GFS Forecasts and GFS T0 datasets can be downloaded from the 
National Oceanic and Atmospheric Administration (NOAA; https://
www.nco.ncep.noaa.gov/pmb/products/gfs/). The GEFS reforecasts 
dataset is also made available by the NOAA at https://registry.open-
data.aws/noaa-gefs-reforecast/. The MERRA-2 dataset is made publicly 
available by NASA (https://gmao.gsfc.nasa.gov/reanalysis/merra-2/
data_access/). The CAMS global reanalysis (EAC4) is available on the 
ADS (Atmosphere Data Store) (https://ads.atmosphere.copernicus.
eu/datasets/cams-global-reanalysis-eac4)76. The CAMS forecasts and 
analysis are similarly available at https://ads.atmosphere.copernicus.
eu/datasets/cams-global-atmospheric-composition-forecasts. The 
WeatherReal-ISD weather station dataset can be downloaded from 
GitHub (https://github.com/microsoft/WeatherReal-Benchmark).  
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The ground-truth tropical cyclone tracks were obtained from the Inter-
national Best Track Archive for Climate Stewardship (IBTrACS)40,41. 
Tropical cyclone tracks for baselines in the North Atlantic and East 
Pacific were downloaded from Automated Tropical Cyclone Forecast 
(ATCF; https://ftp.nhc.noaa.gov/atcf/)57 of the National Hurricane 
Center (NHC) and tracks for baselines in the West Pacific and Austral-
ian region were acquired from private communication with the National 
Taiwan University and the Australian Bureau of Meteorology. All of our 
plots were made using Matplotlib77 and the geographical maps were 
produced using Cartopy78. A more detailed description of the data 
sources is provided in Supplementary Information Section C.

Code availability
Our code and weights are publicly available at https://github.com/
microsoft/aurora (refs. 58–75,79–81).
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Extended Data Fig. 1 | Pretraining on diverse data and increasing model 
size improves performance. a, Performance on ERA5 2021 at 6-h lead time  
for models pretrained on different dataset configurations, labelled C1–C4, 
without fine-tuning. Adding low-fidelity simulation data from CMIP6 (that is, 
CMCC and IFS-HR) improves performance almost uniformly (C2). Adding even 
more simulation data improves performance further on most surface variables 
and for the atmospheric levels present in this newly added data (C3). Finally, 
configuration C4, which includes comprehensive atmospheric coverage  
and analysis data from GFS, achieves the best overall performance, with 
improvements across the board. b, For the same configurations considered in 

a, performance for extreme values on IFS HRES 2022 at 6-h lead time. Shows 
RMSEs computed only on data below (left panels) or above (right panels) a 
threshold b together with a 95% confidence interval obtained through 
bootstrapping. Pretraining on many diverse data sources also improves the 
forecasting of extreme values. c, Bigger models obtain lower IFS HRES 
validation loss for the same number of GPU hours. At 5,000 GPU hours, we find 
that the validation loss behaves like L N N( ) ∝ −0.026, in which N is the number of 
parameters, which corresponds to a 6% reduction in validation loss for every 
ten times increase in model size.
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Extended Data Fig. 2 | Validation curves for all surface-level variables during pretraining. For every surface-level variable, at 5,000 GPU hours, we find that 
the validation loss roughly behaves like f(N) ∝ N−α, in which N is the number of parameters and α > 0 is an estimated parameter.
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Extended Data Fig. 3 | Aurora is an encoder–decoder model with a 3D latent 
representation. The colours are for illustrative purposes only. a, Aurora’s 
encoder module. Input weather states are tokenized and compressed into a  
3D latent representation using Perceiver-style21 cross-attention blocks.  

The resulting latent tokens are augmented with appropriate encodings that 
provide spatial, temporal and scale information. b, Aurora’s decoder module. 
The target output variables are reconstructed in spatial patches by decoding 
Aurora’s 3D latent state using Perceiver-style cross-attention blocks.


	A foundation model for the Earth system
	Aurora: an Earth system foundation model
	Atmospheric chemistry and air pollution
	Ocean wave dynamics
	Tropical cyclone tracking
	High-resolution weather forecasting
	Discussion
	Online content
	Fig. 1 Aurora is a 1.
	Fig. 2 In an operational setting, Aurora matches or outperforms CAMS in most comparisons, at orders of magnitude smaller computational expense.
	Fig. 3 In an operational setting, Aurora matches or outperforms HRES-WAM in most comparisons.
	Fig. 4 In an operational setting, Aurora outperforms state-of-the-art tropical cyclone prediction systems for several agencies and regions worldwide.
	Fig. 5 In an operational setting, Aurora outperforms IFS HRES in most comparisons and is the only AI model to accurately estimate the maximum wind speeds in Storm Ciarán.
	Extended Data Fig. 1 Pretraining on diverse data and increasing model size improves performance.
	Extended Data Fig. 2 Validation curves for all surface-level variables during pretraining.
	Extended Data Fig. 3 Aurora is an encoder–decoder model with a 3D latent representation.




